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Background: Sex-related difference in Alzheimer’s disease (AD) has been proposed,
and apolipoprotein E (ApoE) isoforms have been suggested to be involved in the
pathogenesis of AD.

Objective: We aimed to explore whether cerebrospinal fluid (CSF) ApoE is associated
with AD biomarkers and whether the associations are different (between sexes).

Methods: Data of 309 participants [92 with normal cognition, 148 with mild cognitive
impairment (MCI), and 69 with AD dementia] from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) were cross-sectionally evaluated with the multiple linear regression
model and longitudinally with the multivariate linear mixed-effects model for the
associations of CSF ApoE with AD biomarkers. Sex–ApoE interaction was used to
estimate whether sex moderates the associations of CSF ApoE and AD biomarkers.

Results: Significant interactions between CSF ApoE and sex on AD biomarkers were
observed [amyloid-β (Aβ): p = 0.0169 and phosphorylated-tau (p-tau): p = 0.0453].
In women, baseline CSF ApoE levels were significantly associated with baseline Aβ

(p = 0.0135) and total-tau (t-tau) (p < 0.0001) as well as longitudinal changes of the
biomarkers (Aβ: p = 0.0104; t-tau: p = 0.0110). In men, baseline CSF ApoE levels were
only correlated with baseline p-tau (p < 0.0001) and t-tau (p < 0.0001) and did not
aggravate AD biomarkers longitudinally.

Conclusion: The associations between CSF ApoE and AD biomarkers were sex-
specific. Elevated CSF ApoE was associated with longitudinal changes of AD
biomarkers in women, which indicates that CSF ApoE might be involved in the
pathogenesis of AD pathology in a sex-specific way.
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INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia
characterized by abnormal accumulation of β-amyloid
(Aβ) (Hardy and Selkoe, 2002) and aggregation of
hyperphosphorylated tau in the brain (Zempel and Mandelkow,
2014). A greater number of women have been diagnosed with AD
compared with men according to the epidemiological indicators
(Alzheimer’s Association, 2014), which can be partially explained
by the sex-related differences in neural anatomy and function
(Ingalhalikar et al., 2014; Ritchie et al., 2018). Addressing the
sex-specific variation is crucial for the development of precise
and effective therapeutics in AD.

It is well recognized that Apolipoprotein E (APOE) genotype is
the strongest genetic risk factor for late-onset AD. Recent studies
have found that the effect of APOE gene on AD is modified by
sex (Altmann et al., 2014; Wang et al., 2019). Women between
the ages of 65 and 75 with APOE ε3/ε4 have an increased risk of
developing mild cognitive impairment (MCI) or AD compared
with men (Neu et al., 2017), and the association between APOE ε4
and cerebrospinal fluid (CSF) tau level is stronger among women
than men (Hohman et al., 2018). Animal studies also highlighted
that impaired cognition and decreased presynaptic density were
only observed in female APOE ε4 knockout mice (Rijpma et al.,
2013; Pontifex et al., 2018). On the other hand, APOE ε2 was
implicated to play a protective role in either men (Altmann et al.,
2014; Zhao et al., 2015) or women (McFall et al., 2019).

Apolipoprotein E (ApoE), the APOE gene-encoded protein,
has been suggested to be involved in a variety of pathogenic
processes of AD. Several studies have reported that ApoE acts
on Aβ deposition (Strittmatter et al., 1993; Bales et al., 1999;
Tokuda et al., 2000; Baker-Nigh et al., 2016) and disrupts its
clearance (Deane et al., 2008) in an isoform-dependent way. The
lipidation status of ApoE has also been suggested to influence
degradation of soluble Aβ peptides (Jiang et al., 2008). ApoE
not only binds to soluble Aβ but also competes for its clearance
pathways in the brain (Verghese et al., 2013). Similarly, ApoE
was found to accelerate tau spreading (Wadhwani et al., 2019)
and positively correlate with tau protein level (Lindh et al.,
1997; van Harten et al., 2017). Moreover, ApoE was proposed
to play a role in neurotoxicity (Mahley and Huang, 2012),
mitochondrial dysfunction (Chen et al., 2011), and blood–brain
barrier permeability (Teng et al., 2017; Main et al., 2018),
which are all key mechanisms to AD pathogenesis. Clinical
findings showed that high CSF ApoE concentration could
predict the clinical progression of APOE ε4 carriers (van Harten
et al., 2017), although no consensus has been reached for the
association of CSF ApoE concentration with AD pathogenesis.
Additionally, a recent study found that CSF ApoE mediated the
positive association of APOE ε4 with tau without affecting the
inverse relation between APOE ε4 and Aβ (Slot et al., 2019),
indicating that CSF ApoE might be involved in AD pathology
with mechanisms independent of those of APOE gene on AD
pathology. However, whether the process is modified by sex has
been mostly unexplored.

Interestingly, ApoE seems to be independently synthesized in
the central nervous system and in the peripheral nervous system.

It was found that most CSF ApoE was synthesized in the central
nervous system, as it did not change to the donor’s phenotype
after liver transplantation (Linton et al., 1991). Moreover, a study
in mice revealed that plasma ApoE could not cross the blood–
CSF barrier (Liu et al., 2012). It is known that the composition
of CSF is similar to that of extracellular fluid of the brain tissue,
and the CSF biomarkers are valid proxies for neuropathologic
changes of AD (Jack et al., 2018). Therefore, we aim to explore
whether there are sex-related associations of CSF ApoE and AD
biomarkers using Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database.

MATERIALS AND METHODS

Study Design and Data Sources
The study was designed to investigate whether there are
sex-specific associations of CSF ApoE with well-validated
AD biomarkers by means of cross-sectional and longitudinal
analyses. Data were downloaded from the ADNI database1, which
was launched in 2003 as a public–private partnership, led by
principal investigator Michael W. Weiner, MD. It longitudinally
collected detailed clinical, imaging, and laboratory data from
more than 50 sites across the United States and Canada (the
most recent information on the ADNI is available at http://www.
adni-info.org). The filenames that contained the ApoE level are
Biomarkers Consortium CSF Proteomics Project RBM Multiplex
Data and Primer (Zip file) and Biomarkers Consortium Plasma
Proteomics Project RBM Multiplex Data and Primer (Zip file) in
the website https://ida.loni.usc.edu/pages/access/studyData.jsp?
categoryId=11&subCategoryId=33. Institutional review boards
of all participating institutions approved the ADNI, and
written informed consent was obtained from all participants or
authorized representatives. This study was approved by the ethics
committee of our institution (IRB number: QYFYWZLL26124).

Participants
Our cohort consists of all cognitively normal (CN) controls and
MCI and AD participants from ADNI-1. Detailed inclusion and
exclusion criteria have been reported previously (Petersen et al.,
2010). The inclusion criteria of this study are as follows: (1)
available baseline CSF ApoE and AD biomarkers (Aβ, t-tau, and
p-tau) measurements; (2) sufficient data of sociodemographic
characteristics (age, sex, and education) and clinical evaluations
[APOE ε4 genotype, baseline cognitive diagnosis, body mass
index (BMI), history of cardiovascular disease, dyslipidemia,
hypertension, and depression]. After excluding one participant
without BMI information, 309 participants with sufficient data of
baseline CSF ApoE and other information were included in the
study. Besides, we included 356 participants with baseline plasma
ApoE and sufficient data of sociodemographic and clinical
information to evaluate the associations of baseline plasma ApoE
with AD biomarkers.

1http://adni.loni.usc.edu
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Exposure Measures
The exposure measures include CSF ApoE and plasma ApoE.
CSF ApoE was measured by the multiplex Human Discovery
MAPTM panel on a Luminex 100 platform. Plasma was collected
after an overnight fasting and plasma ApoE was measured by
a 190-analyte multiplex immunoassay panel on the Luminex
xMAP platform (see papers on methods and procedures available
in http://www.adni-info.org).

Outcome Measures
Outcome measures include CSF Aβ, t-tau, and p-tau both at
baseline and follow-ups. CSF was sampled through lumbar
puncture and CSF Aβ, t-tau, and p-tau were measured by
a multiplex xMAP platform with the INNOBIA AlzBio3
kit (Innogenetics, Ghent, Belgium) (Olsson et al., 2005).
Participants have at least one follow-up measurement and
the longest follow-up period is 5 years. A total of 870
measurements were included in the study. Longitudinal CSF
data have been analyzed and described previously in detail
(Toledo et al., 2013).

Covariates
Demographic information, APOE ε4 genotype, baseline cognitive
diagnosis, and medical history were downloaded from the
ADNI database. Other risk factors that might potentially affect
the progress of AD were included in the present study,
such as history of cardiovascular disease (i.e., myocardial
infarction, intermittent claudication, angina, heart failure,
and other evidence of coronary disease), dyslipidemia (i.e.,
hypercholesterolemia, low levels of high-density lipoprotein
cholesterol, and hypertriglyceridemia), hypertension, BMI, and
depression. Selection of the covariates was based on the previous
studies (Livingston et al., 2017; Ferretti et al., 2018).

Statistical Analyses
Clinical and demographic variables of different groups were
compared using the Kruskal–Wallis test for non-parametric
variables and the Chi-square test for categorical variables.
Spearman rank correlation was used for correlations between
CSF ApoE and AD biomarkers.

Multiple linear regression model was performed to explore
the cross-sectional associations of baseline CSF ApoE and
AD biomarkers, with all outcome variables being standardized
to z scores before entering into the model. Two predefined
models were used with the following covariates (model 1:
age, sex, APOE ε4 carrier status, education, and baseline
cognitive diagnosis; model 2: model 1 plus cardiovascular disease,
hypertension, BMI, dyslipidemia, and depression). Interaction
between CSF ApoE and sex was further conducted in model 2
to evaluate the sex-specific associations of baseline CSF ApoE
with AD biomarkers.

Multivariate linear mixed-effects model with random
intercepts and slopes (time), termed time-by-ApoE interaction,
was used to determine the associations of baseline CSF
ApoE and longitudinal changes of AD biomarkers adjusted
for the covariates in model 2. All outcome variables in the

model were standardized to z scores to facilitate comparisons
between modalities. Further analysis with a time-by-ApoE-by-
sex interaction was included in the longitudinal analyses to
evaluate whether CSF ApoE interacted with sex in association
with longitudinal changes of AD biomarkers over the follow-up
periods. All lower-order interactions of this three-way interaction
term were included in the model.

A two-tailed p < 0.05 was considered statistically significant,
except for the interaction analyses in the cross-sectional studies
(p < 0.1), which aims to explore whether there was any potential
interaction. R software, version 3.4.4 (R-project.org/), was used
for all statistical analyses.

RESULTS

Sample Characteristics
Baseline characteristics of the 309 participants are shown in
Table 1. In brief, 92 CN controls (mean age, 75.70 ± 5.45;
male, 50.0%), 148 MCI patients (mean age, 74.84 ± 7.23;
male, 68.9%), and 69 AD patients (mean age, 74.94 ± 7.61;
male, 56.5%) with available baseline CSF ApoE from ADNI-1
cohort were included. The level of CSF ApoE in men is higher
than that in women (Table 1), and significant difference of
CSF ApoE level among different APOE ε4 carrier status was
found (Table 2). No significant differences of CSF ApoE were
observed among the three study groups in the univariate analysis.
There was also no significant difference in sex-stratified AD
biomarkers (Table 1).

During the 5-year-follow-up, 2 CN controls and 85 MCI
patients progressed to AD, and the mean CSF ApoE is 7.03 µg/ml
when these two groups are combined as a whole. The mean CSF
ApoE is 7.37 µg/ml in study participants who did not progress
to AD. No significant differences of CSF ApoE were observed
between those who progressed to AD and those who did not
(p = 0.3709).

Associations of CSF ApoE With CSF
Biomarkers at Baseline
Cerebrospinal fluid ApoE levels were positively associated
with t-tau [β (s.e.): 0.169 (0.021), p < 0.0001] and p-tau
[β (s.e.): 0.098 (0.023), p < 0.0001], but not with Aβ [β
(s.e.): 0.014 (0.020), p = 0.4742] for all the participants at
baseline. Significant CSF ApoE-by-sex interactions with Aβ [β
(s.e.): −0.101 (0.042), p = 0.0169] and p-tau [β (s.e.): 0.098
(0.049), p = 0.0453] were observed (Table 3). Further analysis
stratified by sex showed that both women and men exhibited
significant associations of CSF ApoE with t-tau, while the
association of CSF ApoE with Aβ existed only in women,
and the association of CSF ApoE with p-tau existed only
in men (Table 4). The results were in line with those in
Spearman’s correlation (Figure 1), which showed that CSF
ApoE level was only positively associated with Aβ (r = 0.317,
p< 0.001) in women, whereas the positive associations with t-tau
(r = 0.473, p < 0.001) and p-tau (r = 0.340, p < 0.001) were
only found in men.
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TABLE 1 | Demographic and clinical characteristics.

Women Men CN N = 92 MCI N = 148 AD N = 69 P1 P2

CN N = 46 MCI N = 46 AD N = 30 Total N = 122 CN N = 46 MCI N = 102 AD N = 39 Total N = 187

Age, years 76.26 ± 5.15 72.18 ± 6.78 73.76 ± 7.72 74.11 ± 7.54 75.15 ± 5.73 76.40 ± 7.14 75.85 ± 7.50 75.78 ± 6.88 75.70 ± 5.45 74.84 ± 7.23 74.94 ± 7.61 0.0309 0.8281

APOEε4
carriers

7 (17.39) 29 (63.04)a 22 (73.33)a 58 (47.54) 15 (34.78) 50 (49.02) 27 (69.23) 92 (49.20) 22 (23.91) 79 (53.38) 49 (71.01) 0.8662 <0.0001

BMI, kg/m2 26.26 ± 5.17 25.16 ± 4.26 24.15 ± 3.64 25.33 ± 4.21 26.74 ± 4.28 25.79 ± 3.59 26.03 ± 3.45 26.07 ± 3.74 26.50 ± 4.73 25.60 ± 3.80 25.21 ± 3.63 0.0652 0.1877

Educational
level, years

14.74 ± 2.69 15.24 ± 2.88 14.3 ± 2.64 14.82 ± 2.80 16.52 ± 2.95 16.29 ± 2.92 15.82 ± 3.09 16.25 ± 2.96 15.63 ± 2.95 15.97 ± 2.94 15.16 ± 2.98 <0.0001 0.3382

CSF ApoE 7.20 ± 2.24 6.42 ± 1.74 5.96 ± 2.11 6.601 ± 48.33 7.41 ± 2.17 7.56 ± 2.40 6.91 (2.39) 7.39 ± 2.35 7.30 ± 2.20 7.21 ± 2.27 6.50 ± 2.31 0.0046 0.0571

CSF Aβ 212.80 ±

51.44
156.10 ±

44.37
141.50 ±

30.94
173.90 ±

59.42
203.20 ±

55.40
162.10 ±

51.37
141.40 ±

38.16
167.90 ±

54.28
160.32 ±

53.38
160.24 ±

49.23a
141.41 ±

34.96a,b
0.3074 <0.0001

CSF t-tau 69.93 ± 27.44 115.86 ±

52.23
137.8 ± 64.56 103.94 ±

64.05
67.76 ± 25.52 110.59 ±

52.79
110.25 ±

52.07
94.53 ± 49.74 68.85 ± 26.37 105.33 ±

52.92a
122.24 ±

59.01a,b
0.1197 <0.0001

CSF p-tau 23.44 ± 10.35 38.30 ± 15.43 42.38 ± 16.08 33.70 ± 19.27 26.13 ± 15.93 35.16 ± 15.51 40.13 ± 23.70 33.97 ± 18.19 24.79 ± 13.43 36.14 ±

15.50a
41.11 ±

20.63a,b
0.7774 <0.0001

Cardiovascular
disease

8 (17.39) 11 (23.91) 5 (16.67) 24 (19.67) 23 (50.00) 33 (32.35) 19 (48.72) 75 (40.11) 31 (33.70) 44 (29.73) 24 (34.78) 0.0003 0.6987

Hypertension 25 (54.35) 18 (39.13) 16 (53.33) 59 (48.36) 20 (43.48) 53 (51.96) 18 (46.15) 91 (48.66) 45 (48.91) 71 (47.97) 34 (49.28) 1.0000 0.9806

Hyperlipoidemia 17 (36.96) 19 (41.30) 15 (50.00) 51 (41.80) 23 (50.00) 48 (47.06) 20 (51.28) 91 (48.66) 40 (43.48) 67 (45.27) 35 (50.72) 0.2864 0.6417

Depression 5 (10.87) 14 (30.43) 14 (46.67) 33 (27.05) 3 (6.52) 16 (15.69) 8 (20.51) 27 (14.44) 8 (8.70) 30 (2.02) 22 (31.88) 0.0095 0.0011

Mean
follow-up, y

2.61 ± 1.69 1.98 ± 1.39 1.57 ± 0.86 2.16 ± 1.46 2.63 ± 1.57 2.31 ± 1.47 1.18 ± 0.51 2.11 ± 1.45 2.62 ± 1.62 2.21 ± 1.45 1.35 ± 0.70a,b 0.6999 <0.0001

BMI, body mass index; CSF, cerebrospinal fluid; ApoE, Apolipoprotein E; Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau; MCI, mild cognitive impairment; CN, cognitively normal; AD, Alzheimer’s disease.
Categorical data are shown as n (%) and continuous data are shown as mean ± SD.
P1 value is comparison of the total participants in female and male groups.
P2 value is comparison of the total participants in CN, MCI, and AD groups.
aP < 0.01 compared to the total participants in CN.
bP < 0.01 compared to the total participants in MCI.
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Associations of Baseline CSF ApoE With
Longitudinal Changes of CSF
Biomarkers
Baseline CSF ApoE was not associated with longitudinal changes
of CSF Aβ [β (s.e.): −0.002 (0.004), p = 0.6879], t-tau [β (s.e.):
0.005 (0.005), p = 0.2823], or p-tau [β (s.e.): 0.012 (0.009),
p = 0.1796] in the multivariate linear mixed-effect model in all
the participants (Table 5). However, a three-way interaction of
ApoE-by-sex-by-time was found to be significantly associated
with changes of Aβ [β (s.e.): 0.023 (0.009), p = 0.0096] and t-tau
[β (s.e.): −0.027 (0.010), p = 0.0088]. Further analysis stratified
by sex showed that ApoE was negatively associated with the
longitudinal change of Aβ and positively associated with the
change of t-tau in women (Table 6). No significant associations

were found between baseline CSF ApoE and longitudinal changes
of AD biomarkers in men. In women, baseline CSF ApoE was
correlated with longitudinal changes of Aβ [β (s.e.): −0.018
(0.007), p = 0.0104] and t-tau [β (s.e.): 0.020 (0.007), p = 0.0110]
during the following 5 years. As seen in Figure 2, participants
with high CSF ApoE levels had a faster decrease of Aβ and
increase of t-tau compared with those with low ApoE level during
the following 5 years.

Associations of CSF ApoE With CSF Sex
Hormone-Binding Globulin at Baseline
The mean of CSF sex hormone-binding globulin (SHBG) was
0.14 nmol/L for CN control, 0.15 nmol/L for MCI patients,
and 0.14 nmol/L for AD patients (p = 0.341). The Spearman

TABLE 2 | Demographic and clinical characteristics of participants stratified by APOE ε4 carrier status.

APOE ε4 non-carriers N = 159 With one APOE ε4 allele N = 114 The APOE ε4/ε4 genotype N = 36 P

Age, years 75.76 ± 6.90 75.33 ± 6.45 71.61 ± 6.85 0.0040

Men 95 (59.75) 72 (63.16) 20 (55.56) 0.6897

BMI, kg/m2 26.31 ± 4.50 25.07 ± 3.42 25.69 ± 3.82 0.1102

Educational level, years 15.90 ± 3.01 15.61 ± 3.07 15.00 ± 2.20 0.1203

CSF ApoE 7.46 ± 2.29 6.76 ± 2.23 6.40 ± 2.08 <0.0001

CSF Aβ 199.00 ± 53.84 146.70 ± 34.26 117.90 ± 22.52 <0.0001

CSF t-tau 82.96 ± 48.17 112.50 ± 51.85 120.62 ± 50.64 <0.0001

CSF p-tau 28.24 ± 15.57 38.92 ± 15.98 42.74 ± 20.49 <0.0001

Cardiovascular disease 54 (33.96) 36 (31.58) 9 (25.00) 0.5768

Hypertension 85 (53.46) 49 (42.98) 16 (44.44) 0.2027

Hyperlipoidemia 62 (38.99) 57 (50.00) 23 (63.89) 0.0142

Depression 29 (18.24) 24 (21.05) 7 (19.45) 0.8454

Mean follow-up, years 2.31 ± 1.53 2.01 ± 1.34 1.81 ± 1.37 0.0624

BMI, body mass index; CSF, cerebrospinal fluid; ApoE, Apolipoprotein E; Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau; MCI, mild cognitive impairment; CN,
cognitively normal; AD, Alzheimer’s disease.
Categorical data are shown as n (%) and continuous data are shown as mean ± SD.

TABLE 3 | Associations of CSF ApoE with CSF biomarkers at baseline.

Model 1 Model 2

CSF ApoE CSF ApoE CSF ApoE × sex

β (s.e.) P β (s.e.) P β (s.e.) P

CSF Aβ 0.001 (0.002) 0.5400 0.014 (0.020) 0.4742 −0.101 (0.042) 0.0169*
CSF t-tau 0.176 (0.021) <0.0001* 0.169 (0.021) <0.0001* 0.029 (0.045) 0.5216

CSF p-tau 0.102 (0.023) <0.0001* 0.098 (0.023) <0.0001* 0.098 (0.049) 0.0453

Data are presented as standardized regression coefficients β and standard error (s.e.) with P values.
*Signifies effect is significant when correcting for multiple comparisons (Bonferroni).
Bold values mean statistically significant.

TABLE 4 | Stratified analysis of baseline data.

CSF Aβ CSF t-tau CSF p-tau

β (s.e.) P β (s.e.) P β (s.e.) P

Female 0.093 (0.037) 0.0135* 0.170 (0.037) <0.0001* 0.036 (0.039) 0.3576

Male -0.023 (0.024) 0.3509 0.181 (0.027) <0.0001* 0.122 (0.029) <0.0001*

Data are presented as standardized regression coefficients β and standard error (s.e.) with P values.
The regression analysis was analyzed in model 2.
*Signifies effect is significant when correcting for multiple comparisons (Bonferroni).
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FIGURE 1 | Associations of baseline CSF ApoE concentration with AD biomarkers. Fit lines are shown for individual sex groups. (A) Association of CSF ApoE and
amyloid-β (Aβ); (B) association of CSF ApoE and total tau (t-tau); (C) association of CSF ApoE and phosphorylated tau (p-tau). The coefficients r and P values are for
Spearman rank correlation in each sex cohort.

TABLE 5 | Associations of baseline CSF ApoE with longitudinal changes of CSF biomarkers.

Model 1 Model 2

CSF ApoE CSF ApoE × time CSF ApoE × sex × time

β (s.e.) P β (s.e.) P β (s.e.) P

CSF Aβ −0.002 (0.004) 0.6880 −0.002 (0.004) 0.6879 0.023 (0.009) 0.0096*

CSF t-tau 0.005 (0.005) 0.2838 0.005 (0.005) 0.2823 −0.027 (0.010) 0.0088*

CSF p-tau 0.012 (0.009) 0.1780 0.012 (0.009) 0.1796 0.013 (0.019) 0.5060

Data are presented as standardized regression coefficients β and standard error (s.e.) with P values.
*Signifies effect is significant when correcting for multiple comparisons (Bonferroni).

TABLE 6 | Stratified analysis of longitudinal data.

CSF Aβ CSF t-tau CSF p-tau

β (s.e.) P β (s.e.) P β (s.e.) P

Female −0.018 (0.007) 0.0104* 0.020 (0.007) 0.0110* 0.007 (0.016) 0.6736

Male 0.006 (0.005) 0.3131 −0.004 (0.007) 0.5481 0.020 (0.012) 0.0903

Data are presented as standardized regression coefficients β and standard error (s.e.) with P values.
The regression analysis was analyzed in model 2.
*Signifies effect is significant when correcting for multiple comparisons (Bonferroni).

FIGURE 2 | Associations of different CSF ApoE concentrations and longitudinal changes of CSF biomarkers. Longitudinal CSF Aβ (A), CSF t-tau (B), and CSF p-tau
(C) change based on dichotomy of CSF ApoE level. For better visual display, the baseline values were held at the adjusted means for each sex group. High: ≥7.0
µg/ml, Low: <7.0 µg/ml. 7.0 µg/ml is the median for the baseline CSF ApoE. P value was the result of interaction between time and CSF ApoE level for linear
mixed-effects models in each sex cohort.
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FIGURE 3 | Association between CSF ApoE concentration and sex hormone-binding globulin at baseline. The coefficients r and P values are for Spearman rank
correlation in the whole cohort.

correlation coefficient between baseline CSF SHBG and CSF
ApoE was 0.278 (p = 6.977 × 10−7, Figure 3).

Associations of Baseline Plasma ApoE
With CSF AD Biomarkers
At baseline, a total of 263 participants have both plasma ApoE
and CSF ApoE measurements, the levels of which showed a mild
correlation (r = 0.17, p = 0.005, Supplementary Figure 1) in the
analysis. Besides, plasma ApoE levels of the 356 participants were
positively associated with t-tau [β (s.e.): 0.003 (0.001), p = 0.0462]
and had a significant interaction with sex on t-tau [β (s.e.):
0.006 (0.003), p = 0.0659] at baseline. Further analysis stratified
by sex showed that the association of plasma ApoE with t-tau
existed only in men [women: β (s.e.): 0.003 (0.002), p = 0.1426;
men: β (s.e.): 0.007 (0.003), p = 0.0177]. However, baseline
plasma ApoE was not associated with longitudinal changes of
Aβ, t-tau, or p-tau in all participants. Similarly, no significant
three-way interaction of time × plasma ApoE × sex was found
(Supplementary Table 1).

DISCUSSION

In this study, we observed significant sex-specific associations
of CSF ApoE with AD biomarkers. In women, baseline CSF
ApoE was significantly associated with both baseline CSF Aβ

and t-tau as well as longitudinal changes of the biomarkers.
However, the longitudinal associations were not observed in men,
indicating that CSF ApoE could be considered as an early marker
for AD in women.

Women have been found to have a higher risk of developing
AD even after the prolonged life expectancy has been controlled
(Li and Singh, 2014). Sex is a crucial variable in AD heterogeneity
(Ferretti et al., 2018). Compared with men, women have

a higher lifetime risk of developing AD (Seshadri et al.,
1997) and are more likely to progress into severe clinical
manifestations (Koran et al., 2017), have more extensive brain
AD pathology (Corder et al., 2004; Barnes et al., 2005), and
have faster brain atrophic rate measured by magnetic resonance
imaging (Hua et al., 2010). Our results complement another
mechanism of sex difference between CSF ApoE and major
pathologies of AD, which might partly explain the greater disease
burden of AD in women.

It is known that ApoE synergistically increases Aβ production
(Sawmiller et al., 2019) and its deposit in the brain (Bales et al.,
1999) and disrupts Aβ clearance process (Deane et al., 2008; Jiang
et al., 2008; Verghese et al., 2013). In our current study, CSF ApoE
was associated with increased baseline CSF Aβ and predicted its
decline in the following 5 years in women. The result indicated
that CSF ApoE might aggravate Aβ deposition in the brain (Bales
et al., 1999) by acting as “pathological molecular chaperones”
(Wisniewski and Frangione, 1992) to promote insolubility or
neurotoxicity of CSF Aβ in the early stage of AD pathology
(Hudry et al., 2019) and (or) by disrupting Aβ clearance process
by competing for the same clearance pathways of soluble Aβ

(Verghese et al., 2013). The level of CSF Aβ was abnormally
low after the formation of insoluble amyloid plaque. In our
findings, baseline CSF ApoE in women was associated with the
longitudinal increase of t-tau without any association with p-tau.
It is generally recognized that CSF t-tau is a biomarker for the
intensity of neurodegeneration (Blennow and Zetterberg, 2018),
and Aβ is the upstream of tau in the pathogenesis of AD by
triggering tau from the normal state to toxic state (Bloom, 2014;
Buckley et al., 2019). Therefore, besides the accumulation of
upstream Aβ, CSF ApoE might promote neurodegeneration of
AD via other mechanisms such as mitochondrial dysfunction
(Yin et al., 2019), cytoskeletal alterations (Mahley and Huang,
2012), and inflammation (Shi and Holtzman, 2018). Our findings
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suggest that CSF ApoE can be an important promoter of the
pathological process of AD in women.

In men, baseline CSF ApoE was only correlated with baseline
tau pathology and was not associated with longitudinal AD
biomarkers. A previous study has found that ApoE might affect
tau pathogenesis independent of Aβ pathology (Shi et al., 2017).
CSF ApoE was observed to increase after nerve injury (Aoki et al.,
2003; Xu et al., 2006). These findings could partially explain the
positive association of CSF ApoE with t-tau at baseline in both
women and men. The results that CSF ApoE was not associated
with the pathological deterioration of AD in men are in line with
the previous findings using ADNI database in all participants
(Toledo et al., 2014). However, after stratified by sex, we found
that the association of ApoE and AD biomarkers was sex-specific
and baseline CSF ApoE was only associated with the longitudinal
changes of CSF Aβ and CSF t-tau in women.

We further explored the potential mechanism for the sex-
specific association between CSF ApoE and AD neuropathology.
Interestingly, we found that CSF SHBG, a major transport protein
that modulates biologically active testosterone and estradiol, had
a weak but significant positive correlation with CSF ApoE at
baseline (r = 0.278, p = 6.977 × 10−7, Figure 3). Patients with
AD were reported to have higher plasma SHBG levels, which
may inactivate the functional testosterone and estradiol that
are biologically neuroprotective (Xu et al., 2016). Prior work
also demonstrated that the expression of APOE gene could be
modulated by estrogen (Stone et al., 1997; Srivastava et al., 2008)
and its receptors (Wang et al., 2006). Hence, we speculate that
the sex-specific associations of CSF ApoE with AD biomarkers
may be partially modulated by female sex hormones, which needs
further exploration in the future. At the same time, we cannot
ignore other potential mechanisms, such as that the half-life or
production of ApoE in CSF is sex-specific.

The turnover rate of ApoE isoforms differs substantially
in the central nervous system and in the peripheral nervous
system (Wildsmith et al., 2012). In our study, we found a weak
correlation between CSF ApoE and plasma ApoE. At baseline,
plasma ApoE levels were positively associated with t-tau and
had a significant interaction with sex on t-tau. However, baseline
plasma ApoE was not associated with longitudinal changes of
AD biomarkers, and there was no significant interaction of
time × ApoE × sex. Hence, unlike CSF ApoE, plasma ApoE is not
an early biomarker for AD cascade irrespective of sex. The result
is in line with the findings in animal studies, which showed that
ApoE in peripheral nervous system might function differently
from ApoE in the central nervous system (Lane-Donovan et al.,
2016), probably due to the fact that they cannot permeate the
blood–brain barrier (Liu et al., 2012).

There are some limitations in this study. First, the small
sample size and the potential sampling bias of ADNI (high
proportion of men with AD) might limit the generalizability
of these findings. Second, the missing longitudinal data might
bias estimates of the longitudinal associations between baseline
ApoE and AD biomarkers. Third, CSF ApoE with different ApoE
isoforms (Yu et al., 2014), diverse origins (Brecht et al., 2004),
and lipidation state (Jiang et al., 2008; Chernick et al., 2018) may
have distinct function on neurodegeneration. In our study, we
are unable to differentiate CSF ApoE isoforms, cellular origin,

and lipidation state, all of which might be the potential factors
affecting the association between CSF ApoE and AD biomarkers.
Finally, although we have ruled out the confounding factors that
could potentially affect AD progression, there are still possibilities
that the covariates have causal relationships with CSF ApoE,
which might reduce statistical power.

In summary, we found significant sex differences in the
associations between CSF ApoE protein and AD biomarkers.
In women, elevated CSF ApoE was associated with longitudinal
changes of AD biomarkers, which might be an important
promoter for the neurodegeneration of AD pathology. More
work is needed to explore the potential mechanism underlying
the role of ApoE in the pathogenesis of AD in women
and how the association between sex hormones and ApoE
influences AD pathology.
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